THERMAL THEORY OF FLAME PROPAGATION IN A CONDENSED MEDIUM
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The asymptotic methods described permit calculation of the burning
rate and the temperature and concentration fields in a condensed
medium.

§1. The known mechanisms of propagation of a
first-order exothermic reaction front in the con-
densed phase (combustion of gasless compositions,
progressive polymerization, combustion of nonvolatile
condensed substances, linear pyrolysis) lead to the
steady~state problem of determining the concentration
and temperature fields and the burning rate from the
equations
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where k, p, and ¢ are constants and & (a, T) = ap X

X Bexp [-E/RT]at T{< T =< Tp and &(a, T)=0at Ty <

= T = Ty. The heat flow q;, to the condensed medium

may be derived from external sources or from exo-

thermic reactions in the gas or smoke-gas (fizz zone)

phase in the presence of dispersion. However, cases

are also possible in which there is no flow of heat

from the gasification products to the condensed phase,

i.e., qp = 0.

Assuming that h > 0 as a result of the exothermicity
of the processes involved, we can easily demonstrate
the monotonically increasing cha¥acter of the function
T(x,u), i.e,, dT/dx > 0 at —~« < x < 0. Integrating sys-
tem (1) from —= to 0, and using condition (2), we
obtain
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whence, by virtue of the condition 0 = ¢(0,u) < 1, we
have Tp > Tg.

In [1] it was shown that there exists a unique solu-
tion of problem (1), (2), while in [2] an approximate
solution based on averaging the temperature gradient
in the reaction zone was obtained, A similar approxi-
mate method, involving the approximation of the source
®(a, T) in the reaction zone, was proposed in [3].
Special cases of the problem were investigated in

[4, 5], where approximations in which the convective
term is disregarded were obtained for various types
of chemical reactions. In all these studies of the
thermal theory of combustion, it is assumed that the
activation energy is much greater than the thermal
energy of the molecules (E/RTy > 1),

Retaining this assumption, we wish to propose
an approximate but, in our view, simpler and more
rigorous method of solving problem (1), (2).

First, we reduce problem (1), (2) to dimensionless
form, setting
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Clearly, for determining the functions a(z, m), y(z,m)
and the parameter m on the interval 0 = z < 6, we
have the problem
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z=10, y=d, 4"
=6, y=m(l—28), a=1. (4")
Since system (4) has a first integral, under conditions
(4") we obtain

Y@ my=mll —z-—B +pa(z, m), ()

where at 0 < z = § y(z, m) > 0 and by virtue of (4'), the
surface concentration (0, m) = a(m) is

1 d
a(m):T{7_1+B}, 0 <<a(m)< 1. (6)
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Using expressions (5) and (6) and making the change
of variables

dv= g (2)dz, v=j‘(p(s)ds, )
0

we obtain the problem, equivalent to problem (4)—(4"),
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For the cases of most practical interest, » > 1, and
A = 0.5-0,9. Hence, the chemical reaction takes place
mainly in the region of temperatures close to the
surface temperature Ty, i.e., in the region of small
z and v. Then expanding the function z(v) in series
in a neighborhood of v = 0 and discarding small terms
of the second or higher order, in accordance with
transformation (7), we have

z(vy=w. 9

Substituting (9) into (8) and integrating with observance
of condition (8'), we obtain
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Now, uging condition (8") and noting that ©A > 1
b -t
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Q 0

we have a transcendental equation for the parameter &:
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We now show that Eq. (11) has a unique solution at
any value of g > 0, Since

| |
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b b

at 8= 1, d = 0 Y(¢) changes sign from plus to minus
on the interval d® < & < «, whileat 0< g< 1, d >0, an
analogous change in the sign of the function Y(g) on the
interval @2 < e < d2/(1 ~ B)* occurs if the following-
condition is satisfied:

A—pF + &

Thus, the existence of a solution of Eq. (11) has
been proved. For this solution to be unique, it is nec-
essary that the functions Y(g) decrease monotonically
on the corresponding intervals, i.e., Y < 0. Since

f(p(s)ds<l_—M__
0
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and, in accordance with (6), et <0 at d=0, asa
result of the fact that 1 + Inx < x at x > 1, the deriva-
tive of the function Y(¢) is negative at > 1, d = 0;
B=1,d>0

The case 8 =1, d = 0 does not require additional
investigation, since when the condensed medium is
completely burned up inthe absence of external sources,
a = 0 and from Eq. (11) there follows
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We note that when =1, d=0, aswhen>1, d=0
(incomplete combustion of the material in the con-
densed phase and burnup in the autoignition regime
outside the condensed medium inthe absence of exter-
nal sources), the results of [4, 5] give values of the
burning rate lower than those given by Eq. (11). In the
general case the propagation velocity € of the flame
front depends on the two parameters g and d, i.e., on
the temperature and the heat flux at the surface of the
condensed medium. The latter may be given in each
specific case by certain additional relations,

Thus, having found & from Eq. (11), on applying
relations (7) and (10) we approximately compute the
function a(z, €) given implicitly by

z
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Then, in accordance with (5), we find y(z, €) and the
function z = z(x, €)

X =—

kexpx f ds
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and, hence, the temperature and concentration fields
T =Ty [1 ~ Az(x, €)] and a(x, €). According to (5), the
burning rate

=1/ B e (— _%_‘)
cp . 2/ @an
§2. We now consider the burning of a powder from
the standpoint of the processes taking place in the
condensed phase in the case of a zero-order reaction
and assume that the dispersion of the condensed mate-



rial is not accompanied by a heating effect., Then
the starting steady-state system of equations which
describe the combustion process have the form [6]

aT daT
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+hD(T) =0,

2 E
U=up+ g, Up= —LB exp (~— RTG, u)) dx,

¢(T)=Bpexp(—~—é£—;—) at T1<T\<Tm

dT) =0 at To<T<Th (18)

To determine the temperature field T(x,u) and the
burning rate u, we impose on system (18) the boundary
conditions

x=—0w0, T=Tyix=0,T=T,. (19)

Introducing the degree of dispersion ng =ug/u and car-
rying out transformation (3), we have on the interval
0 = z = § the problem for determining the parameter
m and the function y(z, m):

d
YLt my—po@) =0,
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Z=O, y:‘m[l_—(l—nd)ﬁ]y
z2=8, y=m(1—9), 0<8I. (20)

As distinct from Merzhanov and Dubovitskii [7], we
apply the Zel'dovich procedure [8] to problem (20) and
determine the burning rate

m=

[/ ~2—'§lcp(s) ds - (21)
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For flameless combustion, when the process depends
only on the heat released in the condensed phase Tp =
= Ty + (b/e)(1 — ng) and

S
m=Y/ 2 [p()ds. (22)

Q

In the absence of dispersion, ng =0 and

—
m= l/ .g_b o (s) ds. (23)

Equations (21) and (23) determine the parameter m
with a rather high degree of accuracy, exceeding that
of the method proposed in [6,7]. To determine the
function y(z, m) and, hence, T(x,u) at m < 1, we can
use an asymptotic approximation having the form

N
gz m)~ kayk @), (24)
k=0
where y(z) (k=0,1,2,...,N) are found from the re-

currence differential equations obtained by substituting

(24)into (20) and equating terms with like powers of m.,
Example. Let »A =17, 94 =0, B =0.912, ¢(z) =

= exp (—nAz). From (23), m = 0.359 (numerical inte-

gration of system (20) gives m = 0.362; the formula in

{7] gives m = 0.329). Confining ourselves to two terms
of series (24), we have

Yz, m= ‘/%— (1—¢@)—mx

:x i +vVT 9@ —vV I—9@ )+
* Vice®

—(1—f) } (25)

Since, from (25), m can be calculated correct to 3%
(m = 0,374), the determination of the function y(z, m)
is sufficiently accurate.

§3. With certain simplifying assumptions, the in-
vestigation of the particular class of liquid and fusible
homogeneous nonvolatile condensed substances whose
combustion mechanism was examined in 9] reduces to
system (1), where &(a,T)=0at Ty=T=T;, h>0
and

Pa, T):Bpa[l +(1—a) x

RT - E (26)
x| p—— —1 exp | ——— t T>T,
(p pu )] p( RT ) * '

To determine the functions T(x,u), a(x,u) and the
burning rate u, we impose on system (1) the conditions

X=—o0, T=Tg a=1; x=0o, a=0, —Ez—-=0.(27)

dx

As in §1, we note that dT/dx > 0 on the interval

(o < x < @) and Tn = Ty + h/c. Setting
pp m
=, &= 28
RT»p = (28)

and using expressions (3) and (7) to transform the
starting system, we obtain

Yz, m)=ma—2), (29)

where the concentration a(z, €) and the parameter €
are found from the problem

ZZ —cF(v, 0, F(o a)=
:“_—_Z_(Q[nJr(l_a)(1—n——m(v))], (30)

0
a=0,v=0,a=1, v=—= S(p(s)ds, 0<d<1l. (31)
If we assume that 1 — 7 — A > 0, which is always sat-
isfied in practice, we can easily prove the existence

of a unique solution of problem (30), (31) and show
that, for sufficiently large values of »A,

. 1
_2 S ¢ (s)ds<<e << 0,5. (32)
14n P

Using (32) we find the solution of Eq. (30) in the form
of an asymptotic series:

v(a, &) =cv(a) +0(0) +efup@) +.. . (33)
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Substituting (33) into (30) and expanding the function
F(v,a) in powers of &,

F(v, a)=F(0, a)-+-eFy(0, a)v, +
2
+ %[sz(o, Q)02+ 2Fy (0, Aoyl +...,
after equating terms with like powers of &, we obtain

the following differential recurrence relations for
determining the coefficients of series (33):

Y _Fo o 22—y, 99,
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a

Bearing in mind that z = z(v) is given by relation (7)
and attaching to system (34) the conditions vi(0) =0
(i=1,2,...), which follow from (31) with a =0, we
obtain, on confining ourselves to three terms of series

(33),
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* 2 2
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We can now use condition (31) with « = 1 and obtain a
cubic equation for the approximate determination of
the parameter

1
vs(1)e® + vy (1) € +u1(1)s—5'<p(s)ds=o. (36)
0
Having computed the root of this equation satisfying
condition (32), we find m? = er and, in accordance
with (3), the burning rate u. Using representation (7),
we can approximately find the function a(z, &) from
expression (33) and then, in accordance with (29), we
find y(z,m), The temperature and concentration in the
condensed medium are calculated as in §1, using a
single quadrature. Calculations based on Eqgs, (35) and
(86) gave very good agreement when compared with
the results of numerical integration [9].

NOTATION

T is the temperature of the condensed medium; T,
is the temperature of the starting substance remote
from the combustion zone; Tp is the temperature at
the surface of the burning substance (or the maximum
temperature, if there is no surface); x is the linear
coordinate; a is the concentration of the condensed
substance; ¢ is the specific heat; k is the thermal
conductivity; p is the density; h is the energy release
of the processes in the condensed phase; u is the
burning rate; E is the activation energy; R is the gas
constant; up is the linear decomposition rate; B is the
preexponential; ug is the linear dispersion rate; p is
the pressure; p is the mean molecular weight of the
gaseous products; 6 is the "cutoff" parameter of the
function @(z).
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